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SUMMARY 
This work is devoted to the numerical solution of the Navier-Stokes equations for compressible viscous 
fluids. Finite element approximations and stabilization techniques are addressed. We present methods to 
implement discontinuous approximations for the pressure and the density. An upwinding methodology is 
being investigated which combines the ideas behind the stream line Petrov-Galerkin method and the flux 
limiter methods aiming to introduce numerical diffusion only where it is necessary. 

1. INTRODUCTION 

This paper presents some results for the numerical solution of the Navier-Stokes equations for 
compressible fluids. We shall indeed address a few basic issues such as the choice of elements or 
the use of upwinding or some other form of artificial viscosity. Some of the methods presented are 
relatively non-standard and may not be, for the moment, competitive with more established 
techniques. Nevertheless, we believe that in the present state of the art, it is worth exploring 
alternative routes that might ultimately lead to more insight. 

Our main concern will be the treatment of the density transport equation in which no natural 
dissipative term is present and for which standard finite element techniques seem ill-adapted. 
Experience has shown that numerical results, specially for moderately large Mach numbers, are 
often spoiled by spurious oscillations of pressure, density and temperature, these three variables 
being linked by the state equation. Those oscillations strikingly look like the famous ‘checker- 
board patterns’ of the incompressible case and one wonders whether they have the same origin. 
We have already discussed in another paper’ the importance of the choice of stable elements. The 
essential conclusion is that either one should employ an element which is suitable for the 
incompressible case or some form of stabilization technique derived from this case. Examples of 
suitable elements and discussion of stabilization methods can be found in References 2-5. 
However, in presence of shocks or strong gradients, even stable elements yield oscillatory results. 
At present, the only cure seems to be the introduction of some form of artificial viscosity. This can 
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be done in various ways, explicit or implicit. Upwinding can, in this respect, be considered as 
a way of introducing artificial viscosity. 

Our originality here will be to incorporate some ideas related to the flux limiters or slope limiters 
techniques currently employed in the finite difference method for the approximation of the Euler 
equations. 

We consider various adaptations of the streamline upwinding Petrov-Galerkin 

2. FORMULATION OF THE PROBLEM 

2.1. General presentation 

non-conservative form of the Navier-Stokes equations: 
Let !2 be a bounded domain of R2 or R3 and let r = aS2 be its boundary. We use the following 

(1) 
dP 
a t  
-+u-grad p + p  div u=O, 

AT-pdivu=cD, 

1 2 
Re 3 

z = - [grad u + (grad u)' --(div u)I], 

where p, p and T are linked by the state equation 

F(P,P,  V = O .  

( 3 )  

(4) 

In (3), CD represents the viscous heat production. These equations must of course be completed 
by boundary conditions. Figure 1 presents a typical set of such conditions corresponding to the 
problem for which we present numerical results. On the outflow part of the boundary, we used 
a no-stress condition which is of course artificial. We also consider steady-state problems but in 
our computations this will be done by making a time-dependent solution converge. 

Our starting point in studying the compressible viscous Navier-Stokes equations will be the 
use of the variable (T = log p instead of density. Dividing equation (1) by p, which is assumed 
positive non-zero, and using this change of variable, we obtain indeed a suitable form of the 
continuity equation, containing a convective term in (T: 

a0 

at 
div u + u - grad (T + - = 0. (6) 

Figure 1. Domain fl and boundary conditions 
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It is clearly seen from (6) that there is no diffusion process that might control the transport of a, 
specially near strong variations zones such as shocks. The Navier-Stokes equations for u, p, a and 
Tare  then written as follows: 

e' -+(grad u)u - div z +grad p =  f, [i: 1 
aO 
at 
- + u - grad a + div u = 0, 

e*[!r+u.grad T -~ AT-pdivu-cD=O, 
at ] R e P r  

while the state equation now relates 0 with pressure and temperature 

a=f(p,  TI. 

For example, in the case of a perfect gas, (8) becomes 

and for an isentropic flow 

1 

Y 
a = - log p/co,  

where co is a constant. 

following variational problem. Find u, a, p and T belonging to suitable spaces and satisfying 
As we are interested in looking for finite element solutions of system (7), we consider the 

1 
Re + 44 u, ve") + Nv, P) + - a(u, v)  = (f, v)- h(u, q)+ 

( $e ' , g+  u .grad T  grad $, grad T)-( $, p div u + 0) = 0, 1 R L  
(9) 

for all test functions v, q and $. Here the notations (-;)stands for the L 2 ( Q )  scalar product. Given 
a partition C l = U K ,  we use ( . , . ) K  for the L 2 ( K )  scalar product. The multilinear forms a (.;), 
h ( ., . ) and c ( ., ., . ) in (9) are defined by 

c(u,u,v)=[v,(gradu)u] 

h(v, p )  =- ( p ,  div v) 

grad v:  {grad u + [(grad u)T-+(div u)I] } dx. 

The bilinear form d(q,a) will be written in various ways depending on the discretization of 
u grad a, in fact on the approximation of CJ and eventually on the upwinding method used. We 
present an implementation of discontinuous pressure and density approximations which is, to our 
knowledge, a new feature in the context of compressible flows. The expected counterpart is 
a better reproduction of strong gradients and a gain of computational efficiency. On the other 
hand, continuous approximations are very often used in practice and straightforward for 
implementation. In both cases, oscillations appear for relatively low Reynolds and Mach 
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numbers, whenever the expression of d(a, q) leads to a centred approximation of u grad a. For 
instance, when using a Galerkin formulation, d(a, q) is simply the scalar product (4, u - grad a) 
which is known to generate a centred approximation. To avoid such an undesirable difficulty we 
shall use modified expressions of d(q, a) containing, in one way or other, numerical diffusion. 

This being said, one is naturally led to choose for the approximation of a the same type of 
elements as for p. However, this is not essential if one introduces a decoupled formulations such as 
(6) and (7) and making a different choice would be equivalent to a weak treatment of the state 
equation. 

Looking at equation (6), one sees a transport equation without any diffusive term. We must 
therefore discretize it in a correct way, avoiding in particular the usual pitfalls associated with 
centred schemes. 

Among the many possible choices of suitable discretizations, we consider only triangular 
meshes where velocity is approximated by piecewise continuous quadratic ( P z )  elements and 
temperature by piecewise linear (PI) continuous elements. Pressure and density are represented 
either by a continuous or by a discontinuous piecewise linear approximation. In the case of 
discontinuous linear pressure, a bubble must be added to the velocity field to yield a stable 
approximation of incompressible problems. 

However, a discontinuous field for a leads to diaculties with the term d(q, a) = (u grad a, q )  
which is now undefined. We must therefore look for some way of circumventing the problem. On 
the other hand, standard continuous approximations naturally lead to a centred approximation 
of (6) or related equations. This is well known to be ill-suited for a transport equation. We present 
in the next section some ways to circumvent those difficulties. 

3. DISCRETIZATION OF THE CONVECTIVE TERM u - grad 0 

This section is devoted to the presentation of different options for the discretization of the 
convective term in the transport equation for 0. The possibilities are different for continuous or 
for discontinuous approximations. The classical method for the stabilization of scheme for the 
transport equation relies on upwinded differences; for one-dimensional problems this is fairly well 
established and known to be equivalent to introducing an artificial viscosity. We try to follow this 
line and introduce some upwinding methods. The first is based on a simple numerical directional 
derivative. In the second method we try to combine the streamline upwinding method with a flux 
limiter in order to restrict artificial viscosity to zones where it is really needed. Finally, we present 
methods adapted to handle discontinuous pressure approximations. 

3. I .  Continuous approximations 

3.1.1. Directional derivative method. This method is based on the very simple idea that the 
convective term in a transport equation can be interpreted as a directional derivative. This 
directional derivative will in turn be computed for each node by an upwind finite difference 
scheme along the streamline direction u. Let us introduce some notation (see Figure 2). 

Let ai be the value of D at node i and 11 ui 11 be the Euclidian norm of the velocity at this same 
node. We denote P; (resp. P:) the upwind (resp. downwind) streamline projection of node i on 
the boundary dK,  where the element K is one of the elements sharing node i. Then h;(resp. h: ) is 
the distance between node i and point P;  (resp. P:), while a; (resp. a:) is the value of a at point 
P; (resp. P:). 

Using the above definitions we define the upwind flux at node i by 
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P+ 

Pi- 

Figure 2. 

while, in a similar way, the downwind flux is given by 

Inside element K a discretization of the flux is then expressed using a simple combination of the 
nodal fluxes: 

where the sum is taken on the vertices of K, q is the standard linear interpolation function and the 
parameter a is chosen to adjust the artificial diffusion. We then define the bilinear form d(  ., . ) in (9) 
by 

d(q, o > D D = c  [% (u'gradz)lK * (14) 
K 

However, this method is only first-order accurate and relatively diffusive as will be shown in the 
numerical results. It would be possible to build higher-order versions of this method by using 
more points in the upwind direction. This idea has been also studied by Tabata and Yaoi.' 

3.1.2. Streamline upwindingjux limiter method (SUFL). Streamline-diffusion methods have 
been very popular in recent years for the solution of transport We consider it here 
only in its simplest implementation. However, we try to incorporate in the method ideas coming 
from flux limiters methods. The essential idea is to introduce streamline diffusion only where it is 
necessary. Since upwinding methods modify the original problem by adding diffusion, accuracy is 
affected. Flux limiter methods have been extensively developed in the context of finite differences 
and finite volume methods." Their principle consists in computing a sensor parameter which 
indicates strong gradients zones where an amount of numerical diffusion is added to the 
higher-order centred scheme. In a standard (consistent) streamline-diffusion method, one would 
define the bilinear form d (q, o) by 

u+u - grad 

This formulation is consistent in the sense that the extra term vanishes for the exact solution of (9). 
In (1 5), one usually takes j3 = h/2 11 u I). We define 
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where r is a sensor parameter defined for each node i, using the notation of the previous section, 
by 

(u . grad a); 
(u . grad a): 

ri = 

Intuitively one may get negative values for the sensor parameter near shocks or oscillations, 
indicating zones where maximum diffusion has to be added. On the contrary r w 1 indicates 
a smooth region. Therefore, the function [ ( r )  should take its maximum value for r I 0 and zero 
for r 2 1. For 0 < r I 1, many choices are a priori possible. For instance we may take c(r)= 1 - r .  
For one-dimensional finite difference scheme, it can be shown that [ ( r )  must satisfy some 
conditions in order to keep high-order convergence." We tested the following definition of the 
asymptotic like function [ ( r )  

r I 0, (1: r 2  1. 
( ( r ) =  1-2r/(l+r), 0 I r I 1, (17) 

Remark I 

Integrating by parts d(q,a) as defined by (15), it can easily be shown that the problem 
corresponding to the modified continuity equation can be written as 

aa aa 
at at 

div u +-+ u - grad a - div [ flu(div u + -+ u - grad o)] = 0 . 

The streamline upwinding flux limiter flux is a residual method such as the SUPG method. 
Thus, it maintains the high-order accuracy of Galerkin's method (for smooth solutions) while it 
improves stability. Furthermore, the SUFL method is intrinsically non-linear, i.e. the stabiliz- 
ation process acts like in any 'shock-capturing' method. Zones of strongly varying fluxes, where 
oscillations are most likely to appear, are first detected and the stabilization takes place by 
smoothing the solution. 

Remark 2 

Many choices of the sensor parameter or the diffusion function [ are possible and only 
numerical experiment can discriminate their relative performance. This choice should at least 
respect the following criteria: smooth variations of the sensor parameter and the doubly asymp- 
totic behaviour of the diffusion function. Particularly, in the case of small nodal upwind and 
downwind gradients the value of r should be close to one in order to avoid any computational 
oscillation. 

3.2. Discontinuous discretization 

We now consider the use of a discontinuous approximation for a and p. In our computations, 
this approximation was piecewise linear but the methods described are general and could be 
applied to a wide class of other approximations. 

3.2.1. Smoothing techniques. One obvious method which may be thought of, consists in 
finding a continuous field 6 by smoothing a, that is by taking 6 to be the solution of the problem 

(q, d-a)=O V q E Q ,  (1 8) 
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where Q is the space of piecewise continuous linear elements. This is nothing but a Lz(R) 
projection of the discontinuous fieId a onto Q. Afterwards, d(q, a) could simply be defined by 

4 4 ,  a) = 4(u grad 5)dx . (19) jQ 
We rather used a variant of this which consists in looking for the L2(Q) projection of u-grad a, 
this last expression being taken in the sense of distributions. We thus solve the problem: 

(g,&=<u*gradn,q) t J q € Q .  (20) 

Since 4 is continuous, we can define, from (20), 

where n is the outward normal direction to aK the boundary of K. 
Formula (21) takes into account the jump of a at inter-element boundaries and aext is either 

a given boundary condition on the inflow part of r or taken equal to the interior value (to make 
the jump vanish) on the outflow part. 

3.2.2. Lesaint-Rauiart method. A second method dealing with a discontinuous density would 
not use any smoothing technique. It was introduced by Lesaint and Raviart‘ and it also contains 
an upwinding effect. 

For each element K, let dK- be the inflow part of the boundary dK of K (see Figure 3), 

d K - = { x ~ d K ,  u-n(x)<O} . 
We can now take 4 belonging to the space of discontinuous piecewise linear polynomials and 

we can write 
n 

where [[a]] = oeXt - a is the jump of a across the element boundary. 
This expression can be interpreted as a local approximation of a derivative in the sense of 

distributions while the smoothing technique of the previous section was globally defined on the 
whole of R. In this sense the smoothing technique can also be considered as an averaged 
Lesaint-Raviart method. 

This method has been proven to yield stable and convergent scheme for the transport-diffusion 
equation.’ Furthermore it has the interesting property to intrinsically introduce numerical 
dissipation.” However, its application to ff ow problem was deceptive. A preliminary computa- 
tion of transonic flow shows existence of oscillations, which even blow up for supersonic regime. 

R 

Figure 3. 
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We are led to examine more carefully this scheme particularly for triangular elements and for 
really discontinuous solutions. To this purpose let us study the following benchmark example. 
Consider the case of a given discontinuous field a in a two-dimensional triangular mesh (Figure 4) 
and a constant one-dimensional velocity u. 

One computes d(q, a) using relation (22). The first integral vanishes since a is constant for each 
element, hence d(q, a) is non-zero only for elements which share one side with the interface of 
discontinuity. The pattern of the values of d(q, a) is, as sketched in Figure 5, non-uniform in the 
transverse direction even if the problem is really one-dimensional. 

This fact shows the strong dependency of the scheme to the mesh and its incapacity to represent 
discontinuous fields. Hence, in the presence of shocks the Lesaint-Raviart scheme would lead to 
irregularities of the right-hand side of the variational problem (9) which dramatically reflects on 
velocity and on the pressure. Comparing the smoothing method introduced in Section 3.1.1, one 
can note the following interesting remark. 

The projection 6 of u-grad o over continuous PI functions is given by the following equation: 

Unlike in Lesaint-Raviart scheme, all elements contribute to the calculation of 6 and thus to 
d(q,o) as indicated through relation (21). The consequence of this process is in fact more 
smoothness and regularity of the functional d(q,a)sM. Indeed it can be easily shown that this 
‘averaged Lesaint-Raviart method’ provides constant solution 6, in the transverse direction, 
when applied to the benchmark example discussed above. The counterpart of this gain of 
smoothness is the loss of upwinding and more artificial dispersion. 

4. GENERALIZATION OF THE SUFL METHOD 

So far we discussed various upwinding methods and showed how to apply them for the continuity 
equation. All of the above methods define the density gradient in the variational formulation in 

Figure 4. The test triangular mesh and its velocity field 

Figure 5. Values of d(q, u )  
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order to damp high-frequency density oscillations. This is effective to control steep density 
gradients for relatively high Mach number flows but more diffusion is also needed to stabilize the 
velocity components and the temperature in case of high Reynolds number flows. In this section 
we focus particularly on the SUFL method, applying it to the whole the set of equations (1)-(3). 
The corresponding variational problem will read as follows: 

1 
(v, $ e') + c(u, u, v e') + b(v, p )  + ~e a(u, v) + e(v, u) = (f, v) - b(u, 4) + 

( $e', g + u . g r a d  T +-(grad Y $, grad T)-($, pdiv u+@)+ h($, T)=O, (23) ) RePr 

where 

e(v, u) =I IK {(u .grad v )  A [e'($ + u grad u)-div z + grad p - f dx. 
K 11 (24) 

In the same way, we set 

h($, T ) = x  IK{(u-grad$)AT dx. (25) 
K 11 

In (24) and (25) we have 

(0 for i # j ,  
Aij = 

for i=j, 

In this formulation the second-order derivative terms are computed inside the elements. There- 
fore, we face the following dilemma: for linear approximations these terms completely disappear 
and it is a sign of the poor accuracy of this method. On the other hand, for higher-order 
approximations its implementation is cumbersome. In order to circumvent this problem, we 
propose to slightly modify the above formulation. The divergence ofthe digisionflux vector will be 

Figure 6. The mesh used in the tests 
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Figure 7. Continuous approximation, no upwinding: (a) isomach contours; (b) isobar contours; (c) stream vectors 
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Figure 7. (Continued) 

in fact approximated by its projection over continuous P1 functions using the same techniques as in 
the approximation of the convective terms for discontinuous approximations. 

5. SOLUTION ALGORITHM 

Problem (9) involves two different types of non-linearities: convective-like non-linearities, which 
are present in the incompressible case as well, and compressibility-related non-linearities which 
appear in the state equation and through the high coupling of velocity, pressure, temperature and 
density. Newton’s algorithm, coupled with any implicit Euler time discretization scheme, may be 
thought to be effective for solving such problems due to its interesting convergence properties. 
However, in the present problem, the implementation is not obvious and practically impossible, 
so that we are led to look for other useful variants. To this end, a quasi-Newton method has been 
developed based essentially on the generalized minimum residual method.” Indeed to be 
effectively implemented, Newton’s method requires the computation of the first-order variations 
of the functionals c ( * , - ; )  and d ( - ; )  for any small perturbation of the solution. However, it is 
difficult to get the exact analytical expressions for those functionals and for the corresponding 
tangent matrix when upwinding techniques are used. Hence, only approximations could really be 
written. On the other hand, solving system (9) directly requires large storage if one thinks of 
industrial applications. To circumvent those difficulties, we use a non-linear variant of the 
GMRES algorithm.’ ’-14 This algorithm does not require any matrix computation but only 
computation of successive residuals and scalar products. We give no more details as this is not 
a really original feature of our computations. 
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Figure 8. SUFL, isentropic case: (a) isomach contours; (b) isobar contours; (c) stream vectors 
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I 

t- 

Figure 8. (Continued) 

6. NUMERICAL RESULTS 

A few computations have been carried for simple flow situations in order to check and compare 
the qualities of the methods developed in the previous sections. We present results for a laminar 
flow at Re= 1500 around a NACA0012 aerofoil with zero angle of attack and at a Mach number 
M=085. The mesh used is relatively coarse and is shown in Figure 6. 

The first test is performed for an isentropic flow. Therefore, temperature has no effect on the 
other variables and the various upwinding methods on density could be properly and easily 
compared. For every test case, we present isomach and isobar contours and stream vector plots. 

Figures 7(a)-7(c) present results for the case of a P2-P1 approximation without any upwinding 
oscillations are clearly apparent and this result is used as the comparison reference. 

Figures 8(a)-8(c), 9(a)-9(c) and 10(a)-10(c) present results (with the same isentropic flow) for 
various upwinding methods applied to the density equation. In Figure 8 we see the result of the 
SUFL method of Section 3.1.2, which reduces oscillations but does not eliminate them com- 
pletely. The directional derivative method of Section 3.1.1 (Figure 9) performs better in this 
respect but is clearly too diffusive. In particular, it completely kills the vortex at the trailing edge. 
Finally, the smoothing method of Section 3.2.1 stands somewhere in between, reducing oscilla- 
tions but keeping the vortex at the trailing edge, although strongly reduced. 
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\ 

Figure 9. Directional derivative, isentropic case: (a) isomach contours; (b) isobar contours; (c) stream vectors 
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Figure 10. Discontinuous smoothing method, isentropic case: (a) isomach contours; (b) isobar contours; (c) stream vectors 
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Figure 11. SUFL, perfect case: (a) isomach contours; (b) isobar contours; (c) stream vectors 
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1 

Figure 11. (Continued) 

From these tests, we draw the following conclusions: 

(a) Our smoothing method for discontinuous pressure approximations works effectively. 
However, at this point, we do not see a major advantage over simpler continuous 
approximations; 

(b) Directional derivative methods are very diffusive as can be noticed by the absence of the 
vortex at the trailing edge and by a smaller maximum Mach number; 

(c) SUFL method provides the less diffusive solution. However, it is not diffusive enough to 
handle high Reynolds number flows in presence of strong shocks. The variant of Section 4, 
behaved better, but some other shock-capturing mechanism is needed. 

To check these conclusions, we performed further tests on the SUFL method using a perfect 
gas state law and a finer mesh (Figures 1 l(a)- 1 l(c)) of Reynolds number varying from 500 to 
10000 past a NACA0012 aerofoil at M=0.85 and zero angle of attack. The solution exhibits 
a progression from steady solution to a periodic vortex sheding. Figures 12(a)- 12(c) show 
comparisons of the pressure coefficient C, results with those obtained by Cambier” and 
Boivin.I6 Good agreement is seen for Re= 10OO0, the discrepancies are localized at the trailing 
edge which is more influenced by the unsteadiness of the flow. Figures 13(a), 13(b), 14(a)-14(c) 
show the mach, the pressure contours and the stream vectors for Re = 2000 and Re = 10 OOO. It is 
clearly shown that the shocks and the boundary layers are very well resolved. Although the SUFL 
method effectively kills most oscillations, to accurately simulate flows characteristics we conclude 
that a minimal mesh size is required. 
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7. CONCLUSION 

It was not our intent to present here realistic results of actual computations. Our purpose was to 
test non-standard methods for the discretization of incompressible flows. We have shown the 
feasibility of employing a discontinuous approximation for pressure and we have checked the 
large influence of upwinding techniques on the quality of results. A method introducing diffusion 
only where needed is still to be improved on the quality of results. Particularly a variant of 
Lesaint-Raviart scheme was developed to discretize advective term of discontinuous density field. 
Therefore, mass is conserved locally and there is a gain in computational time. A method 
introducing diffusion only where needed was investigated, and seems worth developing further. 

c p  

x Ref( 4 1  

A SUFL. 
0 Ref[l  ] 

Figure 12. (a) C,  coefficients, Re=2000; (b) C,, coefficients at intrados, Re= lOo00; (c) C, coefficients at extrados, 
Re=10000 
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Figure 13. (a) Isomach contours, Re=2000, finer mesh; (b) Isobar contours, Re=2000, finer mesh 
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I / 

Figure 14. (a) Isomach contours, Re=10000; (b) isobar contours, Re=10000; (c) stream vectors at the leading edge, 
Re=10000 
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